- Polynomials functions and equations
- Factoring, including the factor theorem and the remainder theorem
- Graphing and the characteristics of a graph (e.g., degree, extrema, zeros, end-behaviour)
- Solving equations algebraically and graphically
- 1. What is a polynomial function?
- 2. Polynomial functions are smooth and c_____.
- 3. Sketch the quadratic (and polynomial) $f(x) = -2x^2$ and label 3 points.
- 4. Sketch the cubic polynomial $f(x) = (x-2)^3$ and label 3 points.

5. Sketch the polynomial: y = (x-2)(x+6)(x+2)

- 6. Is $P(x) = \pi x^5 \sqrt{2}x^2 + 1.\overline{3}$ a polynomial function?
- 7. Is $P(x) = x^3 2x + \frac{1}{x}$ a polynomial function?
- 8. $f(x) = (2x+1)(x-2)(x+4)^{\frac{2}{3}}$
 - a. Find the x-intercepts.
 - b. Is f(x) a polynomial?
- 9. Factor to find the roots of $2x^3 + x^2 6x$

10. Factor to solve when you land in the water $h(t) = 8 - 18t^2$

11. Given $P(x) = (3x - 2)(x + \pi)^2$ what are the x-intercepts?

12. What are the intercepts of the polynomial y = f(x) below?

13. What are the factors of the graph below?

14. Solve $2x^2 = 4x$

15.
$$P(x) = x(x-2)^2(x+4)^3(x-4)^2$$

a. Evaluate $P(3)$

b. Intercepts?

C.	Describe the end-behavior of the graph as $x \to 0$	∞ and $x \to -\infty$

d. Sketch the polynomial P(x) while clearly showing the shape (based on the degree of the factors)

16. Sketch $f(x) = -(x-2)(x+6)^2(x)(x-4)^3$

- 17. Identify the degree of the polynomial Q(x) below: $P(x) = 16x^5 44x^6 + x^8 + 640x^4 512x^3 3072x^2 + 4096x$
- 18. Enrichment: What is the degree of the following polynomial: $y = 5x^2y^3 + 4x 7$
- 19. $P(x) = (x-2)^2(x+6)^3$ What is the significance of the multiplicity (exponent of the factor) being 2 (or even)?
- 20. What is the significance of the multiplicity (exponent of the factor) being 3 (or odd)?
- 21. $P(x) = (x-3)^1(x+2)^1x^1$ What is the significance of the multiplicity (exponent of the factor) being 1?
- 22. State the Factor Theorem
- 23. State the Remainder Theorem
- 24. State the rational root theorem (also called the Rational Zero Theorem)

25.
$$P(x) = x^3 + 2x^2 - 4x - 8$$
.

- a. Factor by grouping
- b. Factor using the rational root theorem and then sketch.

26. $P(x) = -x^4 + 6x^2 + 8x + 3$. Fully factor and sketch this polynomial given (x - 3) is a factor.

27. Although you are welcome to use the Factor Theorem to factor polynomials, sometimes its faster to try to pull out a GCF first. Fully factor and sketch: $y = 4x^3 - 14x^2 + 12x$

$$28. \frac{x^3 - 2x^2 + 3x + 2}{x + 2}$$

a. Use long division to find the remainder.

b. Use synthetic division to find the remainder.

c. Use the remainder theorem to find the remainder.

d. Express in the form Quotient $+\frac{remainder}{divisor}$

29. $P(x) = \frac{x^3 - 2x + 3}{x - 1}$. Find the remainder using long division or synthetic division

30. Factor and sketch: $y = 2x^3 + x^2 - 4x - 3$

31. Factor and sketch: $y = x^4 - 2x^3 - 32x^2 + 96x$

32. Enrichment: $P(x) = (2x)$	$(x-3)^2(3x-1)^2$
-------------------------------	-------------------

a. Identify the roots of this polynomials and sketch.

b. Expand this polynomial.

c. Factor this polynomial using the Rational Root Theorem.

34. What is the equation of the mystery degree 4 function below?

