Chain Rule Solutions (DO NOT WRITE ON THIS PAPER)

1. Given $h(x) = (f \circ g)(x)$ find h'(x) using the chain rule.

$$h(x) = f(g(x))$$

$$h'(x) = f'(g(x)) \times g'(x)$$

2. The chain rule thats $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$. Explain why this seems like a valid equation.

du is a small value and they cancel out algebraically

3. Use the chain rule to differentiate: $R(x) = \sqrt{5x - 8}$ $\frac{dR}{dx} = \frac{dR}{du} \times \frac{du}{dx}$

Let
$$u = 5x - 8$$
. Then $R(x) = \sqrt{u} = u^{\frac{1}{2}}$
Then $\frac{dR}{du} = \frac{1}{2}u^{-\frac{1}{2}} = \frac{1}{2\sqrt{u}} = \frac{1}{2\sqrt{5x-8}}$
 $\frac{du}{dx} = \frac{d}{dx}(5x - 8) = 5$
 $\frac{dR}{dx} = \frac{dR}{dy} \times \frac{du}{dx} = \frac{1}{2\sqrt{5x-8}} \times 5 = \frac{5}{2\sqrt{5x-8}}$

- 4. Differentiate: $f(x) = \sin(3x^2 + x)$ $f'(x) = \cos(3x^2 + x) \times (6x + 1)$
- 5. Differentiate: $f(t) = (2t^3 + \cos(t))^{50}$ $f'(t) = 50(2t^3 + \cos t)^{49} \times (6t^2 - \sin t)$
- 6. Differentiate: $h(w) = e^{w^4 3w^2 + 9}$ $\frac{dh}{dw} = e^{w^4 - 3w^2 + 9} \times (4w^3 - 6w)$
- 7. Differentiate: $g(x) = \ln(x^{-4} + x^4)$ $g' = \frac{1}{x^{-4} + x^4} \times (-4x^{-5} + 4x^3)$
- 8. Differentiate: $y = \sec(1 5x)$ Recall that $\frac{d}{dx} \sec u = \sec u \tan u \times \frac{du}{dx}$ $y' = \sec(1 - 5x) \tan(1 - 5x) \times (-5)$ $= -5 \sec(1 - 5x) \tan(1 - 5x)$
- 9. Differentiate: $P(t) = \cos^4(t) + \cos(t^4)$ $P(t) = (\cos t)^4 + \cos(t^4)$ $P' = 4\cos^3 t (-\sin t) - \sin(t^4)(4t^3)$
- 10. Differentiate: $f(x) = [g(x)]^n$ $f'(x) = n g(x)^{n-1} \times g'(x)$

- 11. Differentiate: $f(x) = e^{g(x)}$ $f'(x) = e^{g(x)} \times g'(x)$
- 12. Differentiate: $f(x) = \ln(g(x))$ $f' = \frac{1}{g(x)} \times g'(x)$
- 13. Differentiate: $T(x) = \tan^{-1}(2x)\sqrt[3]{1 3x^2}$ Recall that $\frac{d}{dx}\tan^{-1}u = \frac{1}{1 + u^2} \times \frac{du}{dx}$ Let $f(x) = \tan^{-1}(2x)$ and $g(x) = (1 - 3x^2)^{\frac{1}{3}}$ $T(x) = f(x) \times g(x)$ T' = f'g + g'f (product rule) $= \frac{2}{1 + (2x)^2} (1 - 3x^2)^{\frac{1}{3}} + \frac{1}{3} (1 - 3x^2)^{\frac{-2}{3}} (-6x) \tan^{-1}(2x)$

Note that the -6x came from the Chain Rule:

$$\frac{d}{dx}(1-3x^2) = -6x$$

$$= \frac{2\sqrt[3]{1-3x^2}}{1+4x^2} - \frac{6x \tan^{-1}(2x)}{3\sqrt[3]{(1-3x^2)^2}}$$

14. Differentiate: $y = \frac{(x^3+4)^5}{(1-2x^2)^3}$ Let $f(x) = (x^3+4)^5$ and $g(x) = (1-2x^2)^3$ Use the Quotient Rule: $\frac{f'g-g'f}{g^2}$ along with the Chain Rule

$$y' = \frac{5(x^3+4)^4(3x^2)(1-2x^2)^3 - 3(1-2x^2)^2(-4x)(x^3+4)^5}{(1-2x^2)^6}$$

- 15. Differentiate: $h(t) = \left(\frac{2t+3}{6-t^2}\right)^3$ Combine the Power Rule with the Quotient Rule: $\frac{f'g-g'f}{g^2}$ Let f(x) = 2t+3 and $g(x) = 6-t^2$ $h'(t) = 3\left(\frac{2t+3}{6-t^2}\right)^2 \times \frac{2(6-t^2)-(-2t)(2t+3)}{(6-t^2)^2}$
- 16. Differentiate: $h(z) = \frac{2}{(4z+e^{-9z})^{10}}$ $h(z) = 2(4z+e^{-9z})^{-10}$ $h'(z) = -20(4z+e^{-9z})^{-11} \times (4+e^{-9z}\times -9)$
- 17. Differentiate: $f(y) = \sqrt{2y + (3y + 4y^2)^3}$ $f(y) = \left(2y + \left(3y + 4y^2\right)^3\right)^{\frac{1}{2}}$ Here we use the Chain Rule in a multi-link chain $\frac{df}{dy} = \frac{1}{2} \left[2y + \left(3y + 4y^2\right)^3\right]^{-\frac{1}{2}} \times \left[2 + 3\left(3y + 4y^2\right)^3\right]^{-\frac{1}{2}}$

$$4y^2$$
) $^2 \times (3 + 8y)$

18. Differentiate:
$$y = \tan \left(\sqrt[3]{3x^2} + \ln(5x^4) \right)$$

Recall that $\frac{d}{dx} \tan u = \sec^2 u \times \frac{du}{dx}$
Let $u = \sqrt[3]{3x^2} + \ln(5x^4) = (3x^2)^{\frac{1}{3}} + \ln(5x^4) = \sqrt[3]{3}x^{\frac{2}{3}} + \ln(5x^4)$
 $y' = \sec^2(\sqrt[3]{3x^2} + \ln(5x^4)) \times \left(\frac{2\sqrt[3]{3}}{3}x^{-\frac{1}{3}} + \frac{1}{5x^4} \times 20x^3\right)$
 $= \sec^2(\sqrt[3]{3x^2} + \ln(5x^4)) \left(\frac{2\sqrt[3]{3}}{3\sqrt[3]{x}} + \frac{4}{x}\right)$
 $= \sec^2(\sqrt[3]{3x^2} + \ln(5x^4)) \times \frac{2\left(\sqrt[3]{3}x^{\frac{2}{3}} + 6\right)}{3x}$

19. Differentiate:
$$g(t) = \sin^3(e^{1-t} + 3\sin(6t))$$

 $g'(t) = 3\sin^2(e^{1-t} + 3\sin(6t)) \times (e^{1-t}(-1) + 3\cos(6t) \times 6)$

Challenge

20.
$$h(x) = (f \circ g \circ h)(x)$$
. Find $h'(x)$
 $h(x) = f(g(h(x)))$
 $h'(x) = f'(g(h(x)) \times g'(h(x)) \times h'(x)$

21. Justify why the Chain Rule works

Let
$$h(x) = (f \circ g)(x) = f(g(x))$$
.

The Chain Rule states that $h'(x) = f'(g(x)) \times$

Using Leibniz's notation, if a variable z depends on the variable y,

which itself depends on the variable x (i.e. y and zare dependent variables),

then z, via the intermediate variable of y, depends on x as well.

The chain rule states:

$$\frac{dz}{dx} = \frac{dz}{dv} \times \frac{dy}{dx}$$

Algebraically this makes sense as the dy's (which are known as a small change in the y values) cancel out.

Intuition:

z: position of car

y: position of bike

x: position of person walking

For example, suppose $\frac{dz}{dx}$ represents the change of a car's position relative to the position of a walking person. $\frac{dz}{dz}$ represents the change of a car's position relative to a bike and $\frac{dy}{dx}$ represents the change of a bike's position relative to a person walking. If a car travels twice as fast as a bike and a bike travels four times as fast as a walking person, then the car travels $2 \times 4 = 8$ times as fast as the person.

$$\frac{dz}{dx} = \frac{dz}{dy} \times \frac{dy}{dx} = 2 \times 4 = 8$$

Proof:

Let y = f(u) be a differentiable at u and u = g(x)be differentiable at x. Then, by the definition of derivatives we have:

$$\frac{dy}{dx} = \frac{d}{dx} f(g(x)) = \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{h} \times \frac{g(x+h) - g(x)}{g(x+h) - g(x)}$$

$$= \lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$
Notice that $\lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$ is the definition of $g'(x)$

Also,
$$\lim_{h\to 0} \frac{f(g(x+h))-f(g(x))}{g(x+h)-g(x)}$$
 is the definition of $f'(g(x))$

To see this more clearly we use a change of variables:

$$t = g(x+h) \text{ and } u = g(x)$$

$$\lim_{h \to 0} \frac{f(g(x+h)) - f(g(x))}{g(x+h) - g(x)} \times \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(t) - f(u)}{t - u} \times \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(u) \times g'(x)$$
So, $\frac{dy}{dx} = \frac{dy}{dx} \times \frac{du}{dx}$ as expected.