CA12 Functions and Graphs Solutions (DO NOT WRITE ON THIS PAPER)

- Calculus is the study of continuous c_____, and was developed independently in the late 17th century by N_____ and L_____. change Newton Leibniz
- Another word for instantaneous slope is rate of c______. change
- 3. Calculus is the mathematical study of change. Give an example of how Calculus is relevant to many

fields of study such as Biology or Economics.

Interested in rate-of-change (ex. Population: how fast is the population declining?, economics: how fast money is changing?, Physics: position vs. velocity vs. acceleration)

4. Sketch $y = 3^{-x} - 2$

5. Sketch $y = e^x + 2$

8. Sketch $y = x^3 - 3x^2 + 4$ P(2) = 0 (x - 2) is a factor Long or synthetic division $y = (x - 2)^2(x + 1)$

11. Sketch $y = -2\cos 2x + 2 \cos (bx)$

The *b*-value affect the horizontal compression

17. Sketch $f(\theta) = \arctan \theta$

18.
$$g(x) = \begin{cases} -(x-2)^2 + 4 & x < 3 \\ y = 2x + k & x \ge 3 \end{cases}$$

Find the value of k so that g(x) is continuous (defined $x \in \mathbb{R}$) $-(x-2)^2 + 4 = 2x + k$ $-(x^2 - 4x + 4) + 4 = 2x + k$ $-x^2 + 4x = 2x + k$ $0 = x^2 - 2x + k$ These graph intersect at x = 3 $0 = (3)^2 - 2(3) + k$ 0 = 9 - 6 + k-3 = k

19. Sketch $y = \sqrt{9 - x^2}$ Note: $x^2 + y^2 = 9$ is the equation of a circle with a radius of 3 The general equation of a circle is $x^2 + y^2 = r^2$ $y^2 = 9 - x^2$ $y = \pm \sqrt{9 - x^2}$

$$y = \sqrt{9 - x^2}$$
 is the top half of a circle

20. Sketch $y = \frac{x-1}{|x-1|}$ Memorize the $y = \frac{|x|}{x}$ graph. $y = \frac{x}{|x|}$ is equivalent to $y = \frac{|x|}{x}$. Then shift one unit to the right.

- 22. Even function, odd function, or neither?
 - a. $f(x) = x^4 2x^2$ f(x) = f(-x) means we have an even function $f(x) = x^4 - 2x^2$ $f(-x) = (-x)^4 - 2(-x)^2 = x^4 - 2x^2 =$ f(x)Thus f(x) is an even function.
 - b. f(x) = 2x + 3f(x) is neither an even or odd function.

c.
$$f(x) = x^3 + x$$

 $f(x)$ is an odd function if $f(x) = -f(-x)$
 $-f(-x) = -[(-x)^3 + (-x)] = -[-x^3 - x] = x^2 + x = f(x)$
Thus $f(x)$ is an odd function.

- d. $f(x) = \tan x + x$ $-f(-x) = -[\tan (-x) + (-x)] =$ $-\tan (-x) + x = \tan x + x$ Thus f(x) is an odd function.
- e. $y = \cos^2(2x)$ $\cos(2x)$ is an even function because it is symmetric about the y-axis.
- f. $y = e^x + \ln x$ Neither even, nor odd.
- g. $y = \frac{1}{x}$ Odd function (symmetric about the origin)
- h. x = y y = 1x + 0Odd function (symmetric about the origin)

Challenge

- 23. Inverse functions:
 - a. $f(x) = 2^{x-1}$. Find $f^{-1}(x-1)$ $x = 2^{y-1}$ $\log x = \log 2^{y-1}$ $\log x = (y-1) \log 2$ $\frac{\log x}{\log 2} = y - 1$ $\log_2 x + 1 = f^{-1}(x)$ Thus $f^{-1}(x-1) = \log_2(x-1) + 1$
 - b. $f(x) = (x-2)^2 4, x \ge 2$. Find $g(x) = 2f^{-1}(x)$ $x = (y-2)^2 - 4$ $x + 4 = (y-2)^2$ $\pm \sqrt{x+4} = y - 1$ $1 \pm \sqrt{x+4} = f^{-1}(x)$ However $y \ge 2$ on $f^{-1}(x)$ (and $x \ge -3$) Thus $f^{-1}(x) = 1 + \sqrt{x+4}$ $g(x) = 2(1 + \sqrt{x+4}) = 2 + 2\sqrt{x+4}$ $(x \ge -3)$

c.
$$f(x) = x^2 + 4x - 1$$
. Find $f^{-1}(x)$
 $x = y^2 + 4y - 1$
 $x + 1 = (y + 2)^2 - 4$
 $x + 5 = (y + 2)^2$
 $\pm \sqrt{x + 5} = y + 2$
 $f^{-1}(x) = \pm \sqrt{x + 5} - 2$

25. Sketch $4x^2 + 9y^2 = 36$ Divide each term by 36 $\frac{x^2}{9} + \frac{y^2}{4} = 1$

In general the equation of an ellipse is $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is the equation of an ellipse with a horizontal radius of *a* and a vertical radius of *b*.

27. Sketch $y = 4 - \frac{1}{(x-2)^2}$ Learn how to sketch reciprocal functions. Given $f(x) = (x-2)^2$ can you sketch $y = \frac{1}{f(x)}$?

28. Sketch $y = \log_2 x^2$

Be careful, $\log_2 x^2$ is similar to but not exactly the same as $2\log_2 x$.

Given $\log_2(x^k)$, if k is even a mirroring occurs about the y-axis.

b. Find $g(x) = f(x) = a \cos(2x) + b$ $g(x) = -\frac{1}{2}\cos(2x) + \frac{1}{2}$

33. $f(x) = \tan x$

b. Sketch $\cot^{-1}x$

