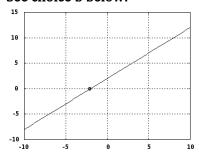
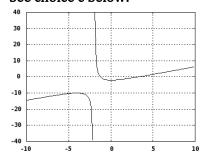

SFU SIMON FRASER UNIVERSITY

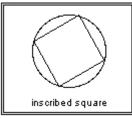

SFU Calculus Readiness Test Assignment

Name: _____


- 1. Which of the following is the graph of the function $f(x) = \frac{x^2-4}{x+2}$?
 - a. See choice a below:

b. See choice b below:

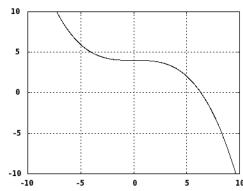
c. See choice c below:



d. See choice d below:

e. None of the above.

- 2. Simplify $\frac{\sqrt{a^8b}}{a^2b}$
 - a. a^4b^2
 - b. a^2b
 - c. a^2
 - d. a^6b^3
 - e. None of the above
- 3. If $p = \frac{3s-r}{rq}$, solve for the variable r in terms of the other variables p, q, and s.
 - a. $r = \frac{3s}{2pq}$
 - b. $r = \frac{pq+1}{3s}$
 - c. $r = \frac{3s}{pq+1}$
 - d. $r = \frac{3s}{pq}$
 - e. None of the above
- 4. A square is inscribed in a circle of radius r. Express the length of the side of the square in terms of r.

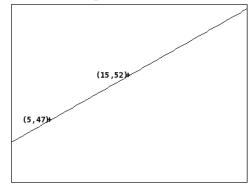


- a. r/2
- b. 2r
- c. r
- d. $r/\sqrt{2}$
- e. None of the above
- 5. The area of a right triangle is 17.5 cm². One leg is 2 cm shorter than the other. Find the length of the shortest side.
- 6. Solve the inequality: $\frac{1}{4} + \frac{1}{3}x > \frac{1}{6} + \frac{2}{3}x$
- 7. Solve |2x + 3| > 7

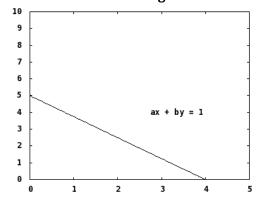
8. Solve
$$\frac{8}{x-9} - \frac{168}{x^2-81} = 1$$

9. If
$$f(x) = \sin(x) + 3\cos(2x)$$
, evaluate $f(\pi)$.

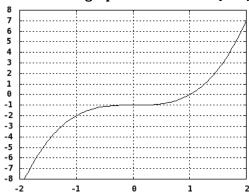
- 10. As x increases from $\frac{\pi}{4}$ to $\frac{3\pi}{2}$, the value of $\sin(x)$
 - a. Increases throughout the interval
 - b. Decreases throughout the interval
 - c. Increases at first, then decreases
 - d. Decreases at first, then increases
 - e. None of the above
- 11. The graph of y = f(x) is shown below:


- Rank the following from smallest to largest.
 - I. f(0)
 - II. $f^{-1}(0)$
- III. f(5)
- IV. $f^{-1}(5)$
- 12. If $f(x) = x^2 4x$, then f(x + h) f(x) is equal to:
 - a. $h^2 4h$
 - b. f(h)
 - c. $2hx + h^2 4h$
 - d. *h*
 - e. $2hx + h^2 8x + 4h$
 - f. None of the above
- 13. A test has twenty questions worth 100 points. The test consists of True / False questions worth 3 points each and multiple choice questions worth 11 points each. How many multiple choice questions are there on the test?

- 14. A 3 metre long ladder is leaning against a wall so that the top of the ladder is at a height h on the wall. An expression for the distance of the bottom of the ladder from the wall is:
 - a. $\sqrt{h^2 9}$
 - b. h 3
 - c. 3 h
 - d. $\sqrt{9-h^2}$
- 15. The length of a certain rectangle is 3 units more than double its width, w. Express the area of the rectangle in terms of w.
 - a. A = w(2w + 3)
 - b. A = 2w(2w + 3)
 - c. A = w(w + 3)
 - d. A = 2w(w+3)
 - e. None of the above
- 16. How many real solutions does the equation $\sqrt{x+5} = x$ have?
- 17. Suppose you are given the graph of a function f(x).


Which of the following statements about the graph of f(x + 2) is true?

- a. It is 2 units to the left of the graph of f(x)
- b. It is 2 units higher than the graph of f(x)
- c. It is 2 units lower than the graph of f(x)
- d. It is 2 units to the right of the graph of f(x)
- e. None of the above.
- 18. A quadratic polynomial function has zeros at -5 and 4. If the *y*-intercept is -60, then the leading coefficient (i.e. the coefficient of x^2) is what?

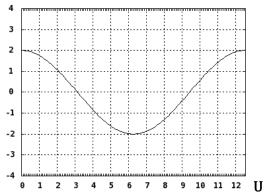

19. What is the equation of the line in the figure below?

20. Find a and b from the figure below:

21. Consider the graph of the function y = f(t) below. If f(z) = -2 and f(x) = z, then find x.

22. Which of the following is equivalent to $\frac{1}{y} + \frac{1}{u}$?

- a. 1/(uy)
- b. 2/(y+u)
- c. u/y
- d. (u + y)/(uy)
- e. 1/(u + y)
- f. None of the above


23. If $f(x) = x^2 - 1$ and $g(x) = \sqrt{x} + 1$, then evaluate $(f \circ g)(x)$

- a. $x + 2\sqrt{x}$
- b. *x*
- c. |x|
- d. $\sqrt{x^2 1} + 1$
- e. None of the above

24. $4^{2x-1} = 2^x$. Solve x

25. The strength of a cable is proportional to the square of its diameter. If a 2 cm cable will support 800 kg, how much will a 3 cm cable support?

26. What function is represented by the graph below?

- a. $y = 2\cos\left(\frac{x}{2}\right)$
- b. $y = 2\cos(2x)$
- c. $y = \cos(2x)$
- d. $y = 2\cos(x)$
- 27. Solve for x. $\log_6(x+7) \log_6 x = 2$
- 28. If $\cos x = \frac{\sqrt{3}}{2}$ and $-\frac{\pi}{2} \le x \le 0$, then find the exact value of x in radians.
- 29. What is the value of x if $\log_5 x = -2$?
- 30. Determine the coordinates of the point (x, y) where the curves $y = \frac{1}{2}x 5$ and $y = x^2 + 2x 15$ intersect in the third quadrant.

Answers

- 1. D
- 2. B
- 3. C
- 4. E
- 5. 5
- 6. x < 1/4
- 7. x < -5 or x > 2
- 8. x = 3, x = 5
- 9. 3
- 10. C
- 11. IV, III, I, II
- 12. C
- 13. 5
- 14. D
- 15. A
- 16. 1
- 17. A
- 18. 3
- 19. $y = \frac{1}{2}x + \frac{89}{2}$ 20. $a = \frac{1}{4}$, $b = \frac{1}{5}$
- 21. 0
- 22. D
- 23. A
- 24. 2/3
- 25. 1800 kg
- 26. A
- 27. 1/5
- 28. $-\pi/6$
- 29. 1/25
- 30. (-4, -7)