Visit this page directly at hunkim.com/9polynomials
- Operations with polynomials with degree less than or equal to 2
- Variables, degree, number of terms, and coefficients, including the constant term
- (x^2+2x-4)+(2x^2-3x-4)
- (5x-7)-(2x+3)
- 2x(n+7)
- (15k^2-10k)\div(5k)
- Using algebra tiles
- 3x(x-4)=3x^2-12x
- 3a+5a
Solution8a - x+2x
Solution3x - 5x-7x
Solution-2x - 3x^2-2x^2+x+9x
Solutionx^2+10x - 2x(x-5)
Solution2x^2-10x - (3x-2)-(5x+1)
Solution-2x-3 - -2(3x^2-5x+1)
Solution-6x^2+10x-2 - 3x(2-3x+4x^2)
Solution12x^3-9x^2+6x - (x^2+3x-2)-(2x^2-5x-7)
Solution-x^2+8x+5 - (15k^2-10k)\div5k
Solution3k-2 - \frac{4x^2}{2x}
Solution2x - \frac{3}{4}x+\frac{x}{4}
Solutionx - \frac{x}{2}-\frac{x}{5}
Solution\frac{3}{10}x - \frac{3x}{2}-\frac{x}{7}
Solution\frac{19}{14}x - \frac{2t}{5}-3t
Solution-\frac{13}{5}t - \frac{-15xy^3-10x^2y^2}{5xy^2}
Solution-3y-2x - -\frac{4a^2b-8ab^3}{2ab}
Solution-2a+4b^2 - x^3-2x^2+3x-(x^3+x^2-5x)
Solution-3x^2+8x - -2(2a^3+4a^2)+a-(3a^2-4a^3)
Solution-11a^2+a - \frac{1}{2}(4x^2-8x+12)-\frac{2}{3}(6x^2+12x-3)
Solution-2x^2-12x+8 - Complete the following algebra tile diagram:
Solution2x - Complete the following algebra tile diagram:
Solution-4x+2 - The polynomial P(x)=6x^5+5x^4-3x^2+x^7+2
- How many terms are in this polynomial?
Solution5 - What is the coefficient of the x^5 term?
Solution6 - Find the degree of this polynomial
Solution7 - Find the constant term
Solution2
- How many terms are in this polynomial?
- What is the degree of the following polynomial?
5x^3y^2+3x-2
Solution5
- Click here for the next BC Math 9 topic: Multi-step Equations
- Click here to return to the BC Math 9 homepage