Visit this page directly at hunkim.com/9algebra or hunkim.com/9equations
- Multi-step one-variable linear equations
- Includes distribution, variables on both sides of the equation, and collecting like terms
- Includes rational coefficients, constants, and solutions
- Solving and verifying 1+2x=3-\frac{2}{3}(x+6)
- Solving symbolically and pictorially
- 2x=8
Solution4 - 12=-3a
Solution-4 - \frac{x}{3}=5
Solution15 - 7=-\frac{a}{2}
Solution-14 - \frac{2}{5}=\frac{\square}{15}
Solution6 - \frac{7}{\square}=\frac{14}{5}
Solution\frac{35}{14} - 2x(3-2)=2
Solution1 - -2(3-5x)=4
Solution1 - \frac{x}{2}=\frac{3}{5}
Solution\frac{6}{5} - \frac{4}{9}=\frac{2}{x}
Solution\frac{9}{2} - \frac{2}{x}=5
Solution\frac{2}{5} - -3=\frac{5}{a}
Solution-\frac{5}{3} - 2-x=3(x+1)
Solution-\frac{1}{4} - -2(2x-3)=4+x
Solution\frac{2}{5} - \frac{2}{x+1}=\frac{3}{4}
Solution\frac{5}{3} - \frac{2x-3}{5}=\frac{3}{-2}
Solution-\frac{9}{4} - 2+\frac{1}{2}=\frac{1}{2-3x}
Solution\frac{8}{15} - 2x+\frac{x}{2}+1=5
Solution\frac{8}{5} - \frac{w}{3}-w+2=\frac{3}{2}
Solution\frac{3}{4} - 1+2x=3-\frac{2}{3}(x+6)
Solution-\frac{3}{4} - 3x-2=\frac{2}{5}\left(\frac{3x}{2}-1\right)
Solution\frac{3}{4} - Challenge:
- If the weight one square is 2 kg. How heavy is the weight of a dozen circles?
Solution72 - \left(\frac{2}{3}\right)^2-\left(-\frac{x}{3}\right)\div \frac{2x}{5}-\frac{(-1)^0}{\sqrt{\frac{1}{121}}}=\frac{1}{\frac{1}{x}}-0!
Solution-\frac{157}{18} - \frac{1+2x}{\frac{3}{2}}-4\left(\frac{2}{3}\right)^2\div\frac{-1^2}{\frac{x}{2}}=\frac{1+\frac{1}{2}}{\frac{2}{3}-2}
Solution-\frac{129}{160} - See diagram below:
Suppose the “blade” of a canoe is \frac{2}{5} of its total length. The shaft portion of the paddle is 100 cm. What is the length of one paddle?
Solution\frac{500}{3} - My dad was 31 when I was 8. How old am I if my dad is double my age now?
Solution23
- If the weight one square is 2 kg. How heavy is the weight of a dozen circles?