Here you will find a concise collection of exponents and radicals practice problems. Visit this page directly at hunkim.com/exponents
- 3^3
Solution27 - 2^{10}
Solution1024 - (-3)^3
Solution-27 - (-2)^4
Solution16 - 1^{123}
Solution1 - 1^0
Solution1 - 1^{2.5+\pi \sqrt{5}}
Solution1 - 0^1
Solution0 - 0^0
SolutionUndefined - (-1)^{101}
Solution-1 - -(-1)^{10}
Solution-1 - \left (\frac{5}{3}\right)^2
Solution25/9 - \left( \frac{5}{3}\right)^{-2}
Solution9/25 - (p^3)(p^2)\times p
Solutionp^6 - (x^2)^3
Solutionx^6 - (2a^2b^3)^3
Solution8a^6 b^9 - \frac{9x^4y^4}{3xy^2}
Solution3x^3 y^2 - \frac{x}{x^{-4}}
Solutionx^5 - \left( \frac{4pq^6}{2p^3q^3}\right)^3
- Solution\frac{8q^9}{p^6}
- \left( \frac{a}{b^3}\right)^{-2}
Solution\frac{b^6}{a^2} - Solve \frac{3^{10}}{3^x}=3^6
Solution4 - Solve \left( \frac{2^{1-2x}}{2^{x+3}}\right)^3=4
Solution-8/9 - Write \frac{15^6}{3^6} as a single power
Solution15625 - Solve 2^{x+1}=8^{3-2x}
Solution8/7 - Simplify -\frac{8x^5-12x^3}{6x^3}
Solution2-\frac{4}{3} x^2 - Express x^{1/2} as a radical
- Solution\sqrt{x}
- Express \sqrt[3]{x} as a fractional exponent
Solutionx^{1/3} - Write x^{2/5} as a radical
Solution\sqrt[5]{x^2} - Evaluate \sqrt{\frac{9}{25}}
Solution\frac{3}{5} - Write \sqrt{8} as a mixed radical
Solution2\sqrt{2} - Write \sqrt[3]{81} as a mixed radical
Solution3\sqrt[3]{3} - Write 3\sqrt{2} as an entire radical
Solution\sqrt{18} - Write 2\sqrt[3]{3} as an entire radical
Solution\sqrt[3]{24} - Simplify \sqrt{2}\times \sqrt{5}+\left( \sqrt[3]{2}\right) \left( \sqrt[3]{5}\right)
Solution\sqrt{10}+\sqrt[3]{10} - Simplify \frac{\sqrt{125}}{5}
Solution\sqrt{5} - (0.09)^{1/2}
Solution0.3 - (0.000008)^{1/3}
Solution0.02 - Solve \sqrt{ \sqrt[3]{ \sqrt{x}} }=2
Solution4096 - Rationalize:
- \frac{1}{\sqrt{2}}
Solution\sqrt{2}/2 - \frac{3}{\sqrt{3}}
Solution\sqrt{3}/3 - \frac{2}{\sqrt[3]{2}}
Solution\sqrt[3]{4}
- \frac{1}{\sqrt{2}}
- Challenge:
- Challenge:\frac{(0.6x^{-1})^{-2}}{\left( \frac{2}{x}\right)^3}
Solution\frac{25x^5}{72} - Solve 9\times 27+2(3)^x=3^{x+1}
Solution5 - Show that \sqrt[c]{a^b}=\left( \sqrt[c]{a}\right)^b
SolutionLS=\left( a^b \right)^{\frac{1}{c}}=a^{\frac{b}{c}}
RS=\left( a^{\frac{1}{c}} \right)^b=a^{\frac{b}{c}}=LS - Solve 9\times 27+2(3)^x=3^{x+1}
Solution5 - Solve 4^{1.5x}=2(32^{x-1})
Solution2 - Solve x^{2/3}=5
Solution5^{\frac{3}{2}}=5\sqrt{5}
- Challenge:\frac{(0.6x^{-1})^{-2}}{\left( \frac{2}{x}\right)^3}