IB Math SL Analysis and Approaches

Here you will find original math practice problems aligned with the IB Math SL analysis and approaches curriculum. Visit this site directly at hunkim.com/sl

IB Math SL Overview

  • Lines
  • Quadratic Functions
  • Exponents and Logarithms
  • Rational Functions
  • Binomial Theorem
  • Trigonometry
  • Statistics
  • Calculus

IB Math SL Chapter 1: Lines

  • Equations of straight lines
  • Parallel and perpendicular lines

Warm-Up

  1. Points A(1,2)A(1,2) and B(4,7)B(4,-7).
    Equation in the form y=mx+by=mx+b?
    Solution
  2. L1:3y2x=4L_1: 3y-2x=4
    L2L_2 is perpendicular to L1L_1 and has an x-intercept of 4. Find L2L_2 in the form y=mx+by=mx+b.
    Solution
  3. f(x)=exf(x)=e^x. The slope at x=2x=2 is e2e^2.
    1. Find the equation of the tangent line at x=2x=2 in the form f(x)=mx+bf(x)=mx+b.
      Solution
    2. yy-intercept of the tangent line?
      Solution

IB Math SL Chapter 2: Quadratics

  • Solving quadratic equations and inequalities
  • Discriminant
  • Domain, range, inverse
  • Composite functions, identity
  • Graphing and transformation functions

Warm-Up

  1. Sketch y=x24y=x^2-4
    Solution
  2. Sketch y=(x2)2y=(x-2)^2
    Solution
  3. f(x)=(x+1)24f(x)=(x+1)^2-4
    1. Sketch
      Solution
    2. Coordinates of the vertex?
      Solution
    3. Domain?
      Solution
    4. Range?
      Solution
    5. Evaluate f(2)f(2)
      Solution
    6. Given x>2x>2 find the range of f(x)f(x)
      Solution
  4. y=2(x3)2+8y=-2(x-3)^2+8
    1. Sketch
      Solution
    2. Write in the form y=ax2+bx+cy=ax^2+bx+c
      Solution
    3. Value of the discriminant?
      Solution
    4. Find the domain in which f(x)>6f(x)>6
      Solution
  5. f(x)=2(x2)(x+4)f(x)=2(x-2)(x+4)
    1. Intercepts?
      Solution
    2. Equation of the line of symmetry?
      Solution
    3. Coordinates of the vertex?
      Solution
  6. What is the equation of the quadratic below in the form:
    y=ax2+bx+cy=ax^2+bx+c?

    Solution
  7. Solve y=2x25x+3y=2x^2-5x+3
    1. By factoring
      Solution
    2. By using the quadratic formula x=b±b24ac2ax=\frac{-b\pm\sqrt{b^2-4ac}}{2a}
      Solution
    3. By completing the square
      Solution
  8. Solve h(t)=3t29th(t)=-3t^2-9t
    Solution
  9. Solve points of intersections of the simultaneous equations:
    y=2x2xy=2x^2-x and y2=2xy-2=2x
    Solution
  10. f(x)=x24x+3f(x)=x^2-4x+3. Describe the transformation to move this parabola’s vertex to the origin.
    Solution
  11. Write in vertex form: y=23x2x2+1y=\frac{2}{3}x^2-\frac{x}{2}+1
    Solution
  12. Given f(x)=(x2)2+4f(x)=(x-2)^2+4 what are the coordinates of the maximum of 1f(x)\frac{1}{f(x)}?
    Solution
  13. f(x)=x2+2x3f(x)=x^2+2x-3. How far away is the point (2,0)(2,0) from the vertex?
    Solution
  14. f(x)=2px2+(p8)x+35p1f(x)=2px^2+(p-8)x+\frac{3}{5}p-1
    1. Show that the discriminant is 195p28p+64-\frac{19}{5}p^2-8p+64
    2. Find the values of pp so that f(x)=0f(x)=0 has two equal roots
      Solution
  15. Solve:
    1. x29x^2\leq 9
      Solution
    2. x2>4x^2>4
      Solution
    3. x2<5x^2<5
      Solution
    4. (x2)2<25(x-2)^2<25
      Solution
    5. (2x+1)27(2x+1)^2\geq 7
      Solution
  16. g(x)=x2+bx+11g(x)=x^2+bx+11. P(1,8)P(-1,8) is on the graph of gg. Find bb.
    Solution
  17. Find kk for which the equations 2x2+6x+k=02x^2+6x+k=0 has repeated roots.
    Solution
  18. f(x)=(k2)x2+x+kf(x)=(k-2)x^2+x+k. Find the value(s) of kk for which f(x)f(x) has no real roots.
    Solution
  19. f(x)=hx2+kx4h,h>0f(x)=hx^2+kx-4h, h>0. Find the number of roots for the equation f(x)=0f(x)=0. Justify your answer.
    Solution
  20. f(x)=2(x+2)(x4)f(x)=2(x+2)(x-4). y=kx16y=kx-16 is tangent to this parabola. Find kk.
    Solution
  21. f(x)=ax24xcf(x)=ax^2-4x-c. A horizontal line, LL, intersects the graph of ff at x=1x=-1 and x=3x=3.
    1. Find the axis of symmetry.
      Solution
    2. Find aa.
      Solution
    3. The equation of LL is y=5y=5. Find the value of cc.
      Solution
  22. f(x)=ax212x+cf(x)=ax^2-12x+c
    1. A horizontal line, LL, intersects ff at x=2x=2 and x=4x=4
      1. Find the equation of the line of symmetry
        Solution
      2. Hence show that a=2a=2
    2. The equation of LL is y=2y=-2. Find cc.
      Solution
  23. See y=ax2+bx+cy=ax^2+bx+c below:

    Positive, negative, or zero?
    1. aa
      Solution
    2. bb
      Solution
    3. cc
      Solution
    4. b24acb^2-4ac
      Solution
  24. Revenue=num items×price per item.\text{Revenue}=\text{num items}\times \text{price per item}. You normally sell 200 items at $50 each. For each $1 price increase you lose 2 sales.
    1. Define xx given R=(2002x)(50+x)R=(200-2x)(50+x)
      Solution
    2. Maximum revenue?
      Solution
    3. What price should you sell each item to maximize revenue?
      Solution
  25. The perimeter of the diagram below is 40.
    1. Show that y=20πx2y=20-\frac{\pi x}{2}
    2. Show that the area A=20x5πx216A=20x-\frac{5\pi x^2}{16}
  26. f(x)=(x2)2,x2f(x)=(x-2)^2, x\geq2. Find f1(x)f^{-1}(x)
  27. f(x)=x2+2x3,x<1f(x)=x^2+2x-3, x<-1.
    1. Find f1xf^{-1}{x}
    2. Evaluate f(3)f(-3)
    3. Evaluate f1(0)f^{-1}(0)
  28. f(x)=x3f(x)=x-3 and g(x)=x2g(x)=x^2.
    1. Find f(g(x))f(g(x))
    2. Find (gf)(x)(g\circ f)(x)
    3. Find (fg)1(x)(f\circ g)^{-1}(x)