Here you will find original IB Math SL exam style logarithms and exponential functions practice problems. Visit this page directly at hunkim.com/sllogarithms
- Evaluate as an integer:
- \log_4 4
- \log_4 2+\log_4 32
- \log_4 8-\log_4 2
- Evaluate \log_4 8
- Let a=\ln 3 and b=\ln 12. Write down the following expressions in terms of a and b:
- \ln 36
- \ln 4
- \ln 108
- Let p=\log_3 a, q=\log_3 b, and r=\log_3 c. Express the following in terms of p, q, and r:
- \log_3 \left(\frac{c}{ab}\right)
- \log_3 \left(\frac{a}{b^2c}\right)
- \log_b a
- Consider a=\log_{63} 64\times \log_{62} 63\times \log_{61} 62\times ...\times \log_2 3. Given that a\in\mathbb{Z}, find the value of a
- Solve \log_5 x-\log_5 2=1+\log_5 3
- Given that \log_b 3=7
- Find the exact value of \log_b 27
- Find the exact value of \log_{\sqrt{b}} 3
- Find the value of b, accurate to 3 significant figures
- Solve 125^{x+3}=\left(\frac{1}{25}\right)^{3x-2}
- Write down the value of:
- \log_3 27
- \log_2 \left(\frac{1}{4}\right)
- \log_{25} 5
- Hence solve \log_3 27+\log_2 \left(\frac{1}{4}\right)+\log_9 x
- Write down the value of:
- Let q=\log_3 b. Express the following in terms of q:
- \log_3 b^2
- \log_3 27b
- \log_{27} b
- Write the expression 6\ln 2-\ln 8 in the form \ln a, where a\in\mathbb{Z}
- Hence, or otherwise, solve 6\ln 2-\ln 8=-\ln x
- Solve \log_3(x^2-4x+4)=1+\log_3(x-2)
- Solve \log_3(1-x)=\log_9(5-2x)
- Find the value of:
- \log_5 50-\log_5 2
- 25^{\log_5 6}
- Simplify e^{2\ln 3}
- Solve 4^x+3(2^{x+1})=2
- f(x)=\log_k (4x-6x^2). The equation f(x)=2 has exactly one solution. Find k
- 21^{2x}=81^{x-1}. Solve x in terms of \ln 3 and \ln 7
- Find integers a and b given a+\frac{b}{2}\log_8 7+10\log_2 14=0