Visit this page directly at hunkim.com/inverse
- f(x)=3x-2. Find f^{-1}(x)
Solution\frac{x+2}{3} - f(x)=(x-2)^2, x\geq 2
- Find f^{-1}(x)
Solution\sqrt{2}+2 - Domain and range of f(x)
Solutionx\geq2 and y\geq0 - Domain and range of f^{-1}(x)
Solutionx\geq0 and y\geq2
- Find f^{-1}(x)
- The point (2,3) is on f(x)
- What point must be on f^{-1}(x)?
Solution(3,2) - What point must be on y=2f\left(\frac{x}{2}-1\right)?
Solution(6,6) - What point must be on 3-3f^{-1}(2x)?
Solution\left(\frac{3}{2},-3\right)
- What point must be on f^{-1}(x)?
- See f(x) below:
Sketch f^{-1}(x) on top of the graph above
Solution - In general, f(x) reflects f^{-1}(x) along which line?
Solutiony=x - Simplify y=f\left(f^{-1}(x)\right)
Solution5 - g(x)=x^2 and f(x)=x^{1/2}
h(x)=g\left(f(x)\right). True or False: Since g(x) and f(x) “undo” each other, h(-4)=-4
SolutionFalse, g has an undefined input - f(x)=3e^{x-2}. Find f^{-1}(x)
Solution\ln x-\ln3+2 - Challenge: f(x)=x^2+6x+2. Find f^{-1}(x)
SolutionCompleting the square on y we get the relation:
f^{-1}(x)=\pm\sqrt{x+7}-3