Here you will find a collection of basic quadratic transformations practice problems. Visit this page directly at hunkim.com/quadratictransformations
- Sketch f(x)=x^2 and label 3 points.
- f(x)=x^2
- Sketch y=x^2+2
- Sketch y=x^2-4
- Sketch f(x)=x^2-5
- Sketch g(x)=f(x)-1
- Sketch g(x)=f(x-2)
- Sketch y=f(x+3)
- Sketch h(t)=\left(t-\frac{1}{2}\right)
- Sketch y=-f(x)
- Sketch y=2f(x)
- Sketch y=-\frac{1}{2}f(x-2)
- Sketch y=x^2+2
- Sketch y=2x^2 and label 3 points.
- Create a table of values for g(x)=2(x-1)^2+3 and sketch 3 points.
- f(x)=x^2. Find the actual equation of:
- g(x)=f(x-1)+2
- g(x)=2f(x)-3
- g(x)=-\frac{2}{3}f(x+3)-\frac{1}{2}
- g(x)=2f(x-2)+1.
- g(x)=f(x-1)+2
- f(x)=x^2-3x
- Sketch y=f(x)
- Given g(x)=2f(x-2), what is the actual equation of g(x)?
Click here to practice more function substitution.
- Sketch y=f(x)
- f(x)=x^2 and g(x)=af(x-b)+c
- What are the effects of the parameters a, b, and c?
- Does order matter? Which transformation should be applied first? Stretches and flips or horizontal and vertical shifts?
- What are the effects of the parameters a, b, and c?
- f(x)=x^2
- g(x)=9f(x) and h(x)=f(3x). Show that h(x)=g(x).
- g(x)=9f(x) and h(x)=f(3x). Show that h(x)=g(x).
- Absolute value transformations: f(x)=-x(x-2).
- Sketch g(x)=|f(x)|
- Sketch h(x)=f\left(|x|\right)
- Sketch g(x)=|f(x)|