Here you will find a collection of basic quadratic transformations practice problems. Visit this page directly at hunkim.com/quadratictransformations
- Sketch f(x)=x2 and label 3 points.
- f(x)=x2
- Sketch y=x2+2
- Sketch y=x2−4
- Sketch f(x)=x2−5
- Sketch g(x)=f(x)−1
- Sketch g(x)=f(x−2)
- Sketch y=f(x+3)
- Sketch h(t)=(t−21)
- Sketch y=−f(x)
- Sketch y=2f(x)
- Sketch y=−21f(x−2)
- Sketch y=2x2 and label 3 points.
- Create a table of values for g(x)=2(x−1)2+3 and sketch 3 points.
- f(x)=x2. Find the actual equation of:
- g(x)=f(x−1)+2
- g(x)=2f(x)−3
- g(x)=−32f(x+3)−21
- g(x)=2f(x−2)+1.
- f(x)=x2−3x
- Sketch y=f(x)
- Given g(x)=2f(x−2), what is the actual equation of g(x)?
Click here to practice more function substitution.
- f(x)=x2 and g(x)=af(x−b)+c
- What are the effects of the parameters a, b, and c?
- Does order matter? Which transformation should be applied first? Stretches and flips or horizontal and vertical shifts?
- f(x)=x2
- g(x)=9f(x) and h(x)=f(3x). Show that h(x)=g(x).
- Absolute value transformations: f(x)=−x(x−2).
- Sketch g(x)=∣f(x)∣
- Sketch h(x)=f(∣x∣)
