Here you will find a collection of concise function transformation practice problems. Visit this page directly at hunkim.com/transformations
- f(x)=x^2
Describe the transformation:- y=f(x)+2
SolutionShift 2 units up - y=f(x-3)
SolutionShift 3 units to the right - y=-2f(x)+1
SolutionMultiply y’s by -2, shift 1 unit up - y=f(2x)
SolutionMultiply x’s by \frac{1}{2} - y=3f\left(3(x-1)\right)+2
SolutionMultiply y’s by 3, multiply x’s by \frac{1}{3}, shift 1 right and 2 up
- y=f(x)+2
- f(x)=x^2
What is the actual equation of y=2f(3x)-1?
Click here if you need to review function substitution.
Solutiony=18x^2-1 - f(x)=x^2. g(x)=f(2x-6)
Describe the horizontal translation of g(x) as compared to f(x)
SolutionShift 3 units right - f(x)=(x-2)(x-6). g(x)=2f(x+1)
Find the equation of the line of symmetry of g(x)
Solutionx=-3 - f(x)=x^2. g(x)=f(-x)
What happens to the point (3,9) on f(x) in this transformation?
SolutionMoves to (-3,9) - f(x)=x^2. g(x)=f(x+3)-1
- Describe this transformation using vector notation
\begin{pmatrix}p \\ q \end{pmatrix}
Solutionp=-3 and q=-1 - Describe this transformation using mapping notation (x,y)\to (?,?)
Solution(x,y)\to(x-3,y-1)
- Describe this transformation using vector notation
- Describe the transformation of:
- y=f\left(\frac{2}{3}x-\frac{4}{5}\right)
SolutionMultiply x’s by \frac{3}{2}, shift \frac{6}{5} to the right - h(t)=f\left(0.2t-\frac{\pi}{2}\right)+e
SolutionMultiply x’s by 5, shift \frac{5\pi}{2} right and e units up
- y=f\left(\frac{2}{3}x-\frac{4}{5}\right)
- f(x)=x^2. g(x)=9f(x)
- h(x) is a horizontal transformation of f(x).
Also h(x)=g(x)
Then h(x)=f(kx). Find k
Solution3 - Challenge: Given f(5x)=kf(3x), find k
Solution\frac{25}{9}
- h(x) is a horizontal transformation of f(x).
- f(x)=2x+3. g(x)=\frac{2}{3}f(1-2x)
What happens to the point (1,5) on f(x) after the transformation?
SolutionMoves to \left(0,\frac{10}{3}\right) - We have mainly focused on transforming quadratics. However all functions can be transformed. Try to memorize the following key base functions:
- f(x)=x^2
- f(x)=2^x
- f(x)=(1/2)^x
- f(x)=\log x
- f(x)=\frac{1}{x}
- f(x)=\sin x
- f(x)=\cos x
- f(x)=\tan x
- See f(x) below:
Sketch y=-2f(x-1)-3 on top of the graph above
Solution - Enrichment: Produce the following function using piecewise notation on Desmos and transform the graph using parameter sliders: y=af\left(b(x\pm c)\right)\pm d
Solution - Enrichment: Memorize some additional base functions that can be transformed:
- y=\lfloor x \rfloor
Solution - y=\frac{|x|}{x}
Solution
- y=\lfloor x \rfloor
- g(x)=\frac{2x-3}{x+1} and f(x)=\frac{1}{x}
- Describe g(x) as a transformation of f(x)
SolutionMultiply y’s by -5, shift 1 left and 2 up - Describe the transformation to move the center of g(x) to the origin
SolutionMove 1 right, 2 down
- Describe g(x) as a transformation of f(x)
- Enrichment: Reciprocal transformations
- f(x)=2x+3. Sketch g(x)=\frac{1}{f(x)}
- f(x)=(x-2)^2-1. Sketch g(x)=\frac{1}{f(x)}
- f(x)=x^2+4. Sketch g(x)=\frac{1}{f(x)}
- Enrichment: Given f(x) below, roughly sketch \sqrt{f(x)} and state the invariant points
- f(x)=x^2+4
- f(x)=x^2-4
- f(x)=4-x^2
- f(x)=-x^2-4
- f(x)=2-x
- Enrichment: f(x)=x(x-2)
- Sketch y=|f(x)|
- Sketch y=f\left(|x|\right)
- Sketch y=f\left(|x|-2\right)
- Sketch y=-2|f(x-2)|
- Sketch y=f\left(|2x-4|-2\right)
- Challenge: g(x)=\frac{2-3x}{2x-3}
Describe g(x) as a transformation of f(x)=\frac{1}{x}
SolutionMany correct solutions (verify on Desmos). For example: Multiply y’s by -5, multiply x’s by \frac{1}{4}, shift \frac{3}{2} right and \frac{3}{2} down