Trigonometry Practice Problems

Here you will find a concise collection of trigonometry practice problems. Visit this page directly by visiting hunkim.com/trigonometry

Trigonometry

Overview

Basics and SOH CAH TOA

  1. Solve x and y in the diagram below:

  2. Is \theta in the triangle below 90^\circ?
  3. Find \theta in the diagram below:
  4. Find x in the triangle below:

  5. See triangle below:
    1. Find x
    2. Find \angle a
    3. Find \angle b
    4. Permimeter?
    5. Area?
  6. See the special triangle below:
    1. Find x
    2. Find \theta
  7. See triangle below:
    1. Use the correct mathematical symbol to indicate that \angle B=90^\circ
    2. By convention, angles in triangles are in uppercase. By convention, how should you label the sides of the triangle?
    3. Is \angle BCA a right angle, acute, or obtuse?
  8. How tall is the tree below?

  9. Find \theta in the diagram below:

  10. Find the height of the hill below:

  11. The height of the pyramid below is 6.
    1. Find \theta
    2. Find \alpha

Trigonometry in Standard Position

  1. Sketch \theta=30^\circ in standard position.
  2. Locate Quadrants I to IV.
  3. \theta=700^\circ
    1. Sketch in standard position.
    2. Reference angle?
  4. Given \pi radians equals 180^\circ
    1. Sketch \theta=\frac{\pi}{6} in standard position.
    2. Sketch \theta=\frac{\pi}{4} in standard position.
    3. Evaluate \sin 30^\circ on your calculator in Degree mode
    4. Evaluate \sin \frac{\pi}{6} in Radian mode

Sine and Cosine Law

  1. Solve the ASA triangle below:
  2. Solve the following AAS triangle below:
  3. Solve x and y in the SSA triangle below:
  4. Ambiguous Case: \angle C=33^\circ. Side c=6 and side b=10.
    1. What are the possible angles of B?
    2. What are the possible lengths of a?
  5. How many possible triangles?
    1. Given \sin B=1.2
    2. \angle A=30^\circ, a=10, and b=16
    3. \angle A=30^\circ, a=20, and c=16
    4. \angle A=30^\circ, a=7, and b=16
  6. Enrichment: Prove the Cosine Law c^2=a^2+b^2-2ab\cos C
  7. When is the Cosine Law used instead of the Sine Law?
  8. Find x and y in the following SAS triangle below:
  9. Solve a and b in the following SSS triangle below:
  10. Does the Sine and Cosine Law work on right-angled triangles?
  11. Starting at home, you jog N30^\circ W for 10 km. You then run S40^\circ W for 3 km. You then run towards home. How far did you jog?
  12. Below is the graph of f(\theta)=\sin \theta or f(x)=\sin x
  13. Evaluate f(30^\circ)
    1. Domain?
    2. Range?
    3. According to this graph \sin 30^\circ is equivalent to what?
  14. Sketch y=\tan x

Special Angles

  1. Evaluate without a calculator:
    1. \sin 30^\circ
    2. \sin 45^\circ
    3. \sin 60^\circ
    4. \cos 30^\circ
    5. \cos 45^\circ
    6. \cos 60^\circ
    7. \tan 30^\circ
    8. \tan 45^\circ
    9. \tan 60^\circ
  2. Evaluate the following special angles:
    1. \sin 120^\circ
    2. \cos 135^\circ
    3. \tan (-690^\circ)
    4. -\sin 225^\circ
  3. Evaluate the following quadrantal angles:
    1. \sin 180^\circ
    2. \cos(-180^\circ)
    3. \sin 270^\circ
    4. \tan(360^\circ)
  4. If \sin \theta is negative and \cos \theta is positive, what quadrant must \theta be in?

Basic Trigonometric Equations

  1. Solve the following trigonometric equations with the domain 0\leq\theta\leq360^\circ:
    1. \sin \theta=\frac{1}{2}
    2. \sin \theta=-\frac{1}{\sqrt{2}}
    3. \sin A=\frac{\sqrt{2}}{2}
    4. \sin \beta=-\frac{\sqrt{3}}{2}
    5. \cos \theta=-0.5
    6. \tan x=\sqrt{3}
    7. \tan \theta=-2
    8. \sin \theta=\pi
    9. \cos A=-\frac{12}{13}. Given 180^\circ<A<270^\circ find \tan A

Unit Circle

  1. Sketch
    1. The unit circle: x^2+y^2=1
    2. x^2+y^2=9
    3. x^2+y^2=5
    4. (x-2)^2+(y-2)^2=4
  1. Express the x and y coordinates  of a point on the unit circle in terms of the basic trigonometric ratios.
  2. Evaluate (\sin^2 x+\cos^2 x)^2
  3. Label the (x,y) coordinates on the unit circle: P(\theta):
    1. \theta=30^\circ
    2. \theta=120^\circ
    3. \theta=-135^\circ
    4. \theta=90^\circ
    5. \theta=-2700^\circ
  4. \theta in standard position on the unit circle has coordinates \left(-\sqrt{3},1\right). Find \theta.

Trigonometric Identities

  1. \tan\theta=\frac{\sin\theta}{\cos\theta}
  2. \sin^2\theta+\cos^2\theta=1

Click here for more math practice problems.