Visit this page directly at hunkim.com/types
- Give examples of the following types of numbers:
- Natural
Solution1, 2, 3, ... - Whole
Solution0, 1, 2, 3, ... - Integers
Solution..., -3, -2, -1, 0, 1, 2, 3, ... - Rational
SolutionNumbers that can be expressed in the form \frac{a}{b} where a and b are integers - Real
SolutionIncludes all rational number but also irrational numbers such as \sqrt{2}, \pi, e - Complex
SolutionIs a combination of real numbers and imaginary number for example 3+i which means 3+\sqrt{-1}
- Natural
- Rational or irrational?
- \sqrt{5}
SolutionIrrational - \sqrt{\frac{25}{9}}
SolutionRational - \pi
SolutionIrrational - 1.\bar{6}
SolutionRational
- \sqrt{5}
- What letter symbols represents the types of numbers?
- Natural
Solution\mathbb{N} - Whole
Solution\mathbb{W} - Integer
Solution\mathbb{Z} - Rational
Solution\mathbb{Q} - Real
Solution\mathbb{R} - Complex
Solution\mathbb{C}
- Natural
- Which of the following are irrational numbers?
- I: \pi
- II: 2.5234872983123 ...
- III: 1.5
- IV: 2.\bar{3}
- V: \sqrt{2}
- VI: \sqrt{16}
SolutionChoices I, II, V
- Rank from least to greatest:
- I: 2.5
- II: \sqrt{9}
- III: -100
- IV: 3\sqrt{2}
- V: \frac{8}{3}
- VI: 3.\bar{3}
- VII: \infty
- VIII: 200%
SolutionIII, VIII, I, V, II, VI, IV, VII
- List the first four prime numbers
Solution2, 3, 5, 7 - List the first four perfect squares
Solution1, 4, 9, 16 - List the first four positive perfect cubes
Solution1, 4, 9, 16 - Challenge: Show that 1.\bar{23} is a rational number
SolutionLet x=0.\bar{23}
Then 100x=23.\bar{23}
Subtract these two equations
99x=23
x=\frac{23}{99}