Here you will find a concise collection of logarithms practice problems. Visit this page directly at hunkim.com/logarithms or hunkim.com/log
- Describe the connection between 2^3=8 and \log_2 8=3
SolutionIn general a^b=c is equivalent to \log_a c=b - Write as a logarithm: 7^{-2}=\frac{1}{49}
Solution\log_7 \frac{1}{49}=-2 - Evaluate:
- \log 100
Solution2 - \log 1,000,000
Solution6 - \log 10
Solution1 - \log 1
Solution0 - \log{\frac{1}{1000}}
Solution-3 - \log_3 81
Solution4
- \log 100
- Evaluate 3\log_2 1024
Solution30 - y=\log x
- Sketch and label 3 points
Solution - What is the assumed base?
Solution10 - How does this graph compare with y=\log_2 x or y=\log_5 x?
SolutionSame x-intercept but the graph curves more sharply - Intercept(s)?
Solutionx=0
- Sketch and label 3 points
- Enrichment – the natural logarithm:
- Define y=\ln x
Solutiony=\log_e x - Evaluate \ln e
Solution1 - Evaluate \ln\left(\frac{1}{e^3}\right)
Solution-3
- Define y=\ln x
- What are the restrictions on y=\log_b x?
Solutionb, x>0. Also, b\neq 1 except for the case \log_1 1=1 - Basic log rules:
- \log x^3=k \log x. Find k
Solution3 - \log_2 x=\frac{\log x}{k}. Find k
Solution\log 2 - \log_2 3=\frac{k}{\log 2}. Find k
Solution\log 3 - \log_{7} 5=\frac{\log_{3} 5}{k}. Find k
Solution\log_3 7 - \log_2(15)=\log_2 3+k. Find k
Solution\log_2 5 - \log_7\left(\frac{2}{5}\right)=\log_7 2-k. Find k
Solution\log_7 5
- \log x^3=k \log x. Find k
- Enrichment – Prove the following log rules:
- Product property \log_b(xy)=\log_b x+\log_b y
- Quotient property \log_b\left(\frac{x}{y}\right)=\log_b x-\log_b y
- Power property \log_b \left(x^k\right)=k\log_b x
- Change of base property \log_a x=\frac{\log_b x}{\log_b a}
- Basic log transformations:
- y=\log x+2
SolutionShift 2 units up - y=\log(x+3)
SolutionShift 3 units left - y=2\log(x-1)+5
SolutionMultiply y’s by 2, then shift 1 right and 5 up - y=-\log(2x)
SolutionMultiply y’s by -1 and multiply x’s by \frac{1}{2} - Challenge – sketch f(x)=\sqrt{\ln (x-2)}
Solution
- y=\log x+2
- What is the equation of the log function below?
Solutiony=\log\left(\frac{1}{2}(x-2)\right) - f(x)=-8\log_5 [10(x+8)]
- Range?
SolutionAll real numbers - Domain?
Solutionx>-8 - Equation of the asymptotes?
Solutionx=-8 - x-intercept?
Solution-7.9
- Range?
- Write as a single logarithm: \log_4 a+7\log_4 b+\log_4 z
Solution\log_4 ab^7z - If a=\log 3, b=\log 5, c=\log 7, rewrite \log \frac{5}{441} in terms of a, b, and c. Hint: 21\times21=441
Solution-2a+b-2c - Evaluate: \log_3 27-\log_x 1+\log_7 7
Solution4 - \log_{\sqrt{2}}\left(\frac{1}{x}\right)=k\log_2 x. Find k
Solution-2 - Given \log_7 21\approx 1.56 estimate \log_7 3 without a calculator
Solution0.56 - Find the inverse of:
- f(x)=\log x?
Solution10^x - y=\log_2 (x-3)?
Solution2^x+3 - y=2^x?
Solution\log_2 x - y=e^x?
Solution\ln x - f(x)=\left (\frac{1}{6} \right)^x
Solution-\log_6 x or \log_6\left(\frac{1}{x}\right)
- f(x)=\log x?
- True or False:
- y=\log x^3=3\log x
SolutionTrue - y=\log x^2=2\log x
SolutionFalse. Only the right half is equivalent - y=\log (x^2)=\log (x)^2
SolutionFalse - \log_2 x cannot be negative
SolutionFalse - y=\log (-x) is undefined
SolutionFalse. We mirror f(x)=\log(x) about the y-axis - \log_2 5+\log x=\log_2 5x
SolutionFalse - \log(xy^2)=2\log(xy)
SolutionFalse - f^{-1}(x)=\frac{1}{f(x)}
SolutionFalse
- y=\log x^3=3\log x
- Simplify 3^{\log_3 9}
Solution9 - Given 5^{2x-1}=3^{x+2}Show that x=\frac{-2\log 3-\log 5}{\log 3-2\log 5}
- Show that x=\frac{\log 5+2\log 3}{2\log 5-\log 3}
- Find k given x=\log_k 45
- Solution\frac{25}{3}
- Solve the log equation:
- \log_3 x=\log_3 2+\log_3 3
Solution6 - \log(x+2)+\log(x-1)+1=2
Solution3 - 3+3\log(2x)=15
Solution5000 - \log(x+2)+3+\log(x-1)=4
Solution3. Reject the extraneous root - \log_2(x-6)=3-\log_2(x-4)
Solution8. Reject the extraneous root - \log_2(x+3)^2=4
Solution1 or -7. Do not drop the exponent first in this question (or you will lose the second root) - Challenge: e^{\ln x^2}=\pi^2
Solution\pm\pi
- \log_3 x=\log_3 2+\log_3 3
- Applications of Logarithms:
- How many times stronger is an earthquake that has a magnitude of 8.5 vs 6.5? Hint: M=\log\left(\frac{I_A}{I_0}\right)
SolutionMagnitude 8.5 is 100 times stronger than magnitude 6.5
- How many times stronger is an earthquake that has a magnitude of 8.5 vs 6.5? Hint: M=\log\left(\frac{I_A}{I_0}\right)
- Challenge – solve \log\left(\frac{9}{10}\right)<\frac{9}{10}
Solutionx>\frac{9}{10\log\left(\frac{9}{10}\right)} or with a non-graphing calculator x>-19.7
- Click here for more IB Math SL style logarithms practice problems