Logarithms Practice Problems

Here you will find a concise collection of logarithms practice problems. Visit this page directly at hunkim.com/logarithms or hunkim.com/log

  1. Describe the connection between 2^3=8 and \log_2 8=3
    Solution
    In general a^b=c is equivalent to \log_a c=b
  2. Write as a logarithm: 7^{-2}=\frac{1}{49}
    Solution
    \log_7 \frac{1}{49}=-2
  3. Evaluate:
    1. \log 100
      Solution
      2
    2. \log 1,000,000
      Solution
      6
    3. \log 10
      Solution
      1
    4. \log 1
      Solution
      0
    5. \log{\frac{1}{1000}}
      Solution
      -3
    6. \log_3 81
      Solution
      4

  4. Evaluate 3\log_2 1024
    Solution
    30

  5. y=\log x
    1. Sketch and label 3 points
      Solution

    2. What is the assumed base?
      Solution
      10

    3. How does this graph compare with y=\log_2 x or y=\log_5 x?
      Solution
      Same x-intercept but the graph curves more sharply

    4. Intercept(s)?
      Solution
      x=0

  6. Enrichment – the natural logarithm:
    1. Define y=\ln x
      Solution
      y=\log_e x

    2. Evaluate \ln e
      Solution
      1

    3. Evaluate \ln\left(\frac{1}{e^3}\right)
      Solution
      -3

  7. What are the restrictions on y=\log_b x?
    Solution
    b, x>0. Also, b\neq 1 except for the case \log_1 1=1

  8. Basic log rules:
    1. \log x^3=k \log x. Find k
      Solution
      3

    2. \log_2 x=\frac{\log x}{k}. Find k
      Solution
      \log 2

    3. \log_2 3=\frac{k}{\log 2}. Find k
      Solution
      \log 3

    4. \log_{7} 5=\frac{\log_{3} 5}{k}. Find k
      Solution
      \log_3 7

    5. \log_2(15)=\log_2 3+k. Find k
      Solution
      \log_2 5

    6. \log_7\left(\frac{2}{5}\right)=\log_7 2-k. Find k
      Solution
      \log_7 5

  9. Enrichment – Prove the following log rules:
    1. Product property \log_b(xy)=\log_b x+\log_b y
    2. Quotient property \log_b\left(\frac{x}{y}\right)=\log_b x-\log_b y
    3. Power property \log_b \left(x^k\right)=k\log_b x
    4. Change of base property \log_a x=\frac{\log_b x}{\log_b a}
  10. Basic log transformations:
    1. y=\log x+2
      Solution
      Shift 2 units up
    2. y=\log(x+3)
      Solution
      Shift 3 units left
    3. y=2\log(x-1)+5
      Solution
      Multiply y’s by 2, then shift 1 right and 5 up
    4. y=-\log(2x)
      Solution
      Multiply y’s by -1 and multiply x’s by \frac{1}{2}
    5. Challenge – sketch f(x)=\sqrt{\ln (x-2)}
      Solution


  11. What is the equation of the log function below?

    Solution
    y=\log\left(\frac{1}{2}(x-2)\right)

  12. f(x)=-8\log_5 [10(x+8)]
    1. Range?
      Solution
      All real numbers

    2. Domain?
      Solution
      x>-8

    3. Equation of the asymptotes?
      Solution
      x=-8

    4. x-intercept?
      Solution
      -7.9

  13. Write as a single logarithm: \log_4 a+7\log_4 b+\log_4 z
    Solution
    \log_4 ab^7z

  14. If a=\log 3, b=\log 5, c=\log 7, rewrite \log \frac{5}{441} in terms of a, b, and c. Hint: 21\times21=441
    Solution
    -2a+b-2c

  15. Evaluate: \log_3 27-\log_x 1+\log_7 7
    Solution
    4

  16. \log_{\sqrt{2}}\left(\frac{1}{x}\right)=k\log_2 x. Find k
    Solution
    -2

  17. Given \log_7 21\approx 1.56 estimate \log_7 3 without a calculator
    Solution
    0.56

  18. Find the inverse of:
    1. f(x)=\log x?
      Solution
      10^x

    2. y=\log_2 (x-3)?
      Solution
      2^x+3

    3. y=2^x?
      Solution
      \log_2 x

    4. y=e^x?
      Solution
      \ln x

    5. f(x)=\left (\frac{1}{6} \right)^x
      Solution
      -\log_6 x or \log_6\left(\frac{1}{x}\right)

  19. True or False:
    1. y=\log x^3=3\log x
      Solution
      True

    2. y=\log x^2=2\log x
      Solution
      False. Only the right half is equivalent

    3. y=\log (x^2)=\log (x)^2
      Solution
      False

    4. \log_2 x cannot be negative
      Solution
      False

    5. y=\log (-x) is undefined
      Solution
      False. We mirror f(x)=\log(x) about the y-axis

    6. \log_2 5+\log x=\log_2 5x
      Solution
      False

    7. \log(xy^2)=2\log(xy)
      Solution
      False

    8. f^{-1}(x)=\frac{1}{f(x)}
      Solution
      False

  20. Simplify 3^{\log_3 9}
    Solution
    9

  21. Given 5^{2x-1}=3^{x+2}Show that x=\frac{-2\log 3-\log 5}{\log 3-2\log 5}
    1. Show that x=\frac{\log 5+2\log 3}{2\log 5-\log 3}
    2. Find k given x=\log_k 45
    3. Solution
      \frac{25}{3}

  22. Solve the log equation:
    1. \log_3 x=\log_3 2+\log_3 3
      Solution
      6

    2. \log(x+2)+\log(x-1)+1=2
      Solution
      3

    3. 3+3\log(2x)=15
      Solution
      5000

    4. \log(x+2)+3+\log(x-1)=4
      Solution
      3. Reject the extraneous root

    5. \log_2(x-6)=3-\log_2(x-4)
      Solution
      8. Reject the extraneous root

    6. \log_2(x+3)^2=4
      Solution
      1 or -7. Do not drop the exponent first in this question (or you will lose the second root)

    7. Challenge: e^{\ln x^2}=\pi^2
      Solution
      \pm\pi

  23. Applications of Logarithms:
    1. How many times stronger is an earthquake that has a magnitude of 8.5 vs 6.5? Hint: M=\log\left(\frac{I_A}{I_0}\right)
      Solution
      Magnitude 8.5 is 100 times stronger than magnitude 6.5

  24. Challenge – solve \log\left(\frac{9}{10}\right)<\frac{9}{10}
    Solution
    x>\frac{9}{10\log\left(\frac{9}{10}\right)} or with a non-graphing calculator x>-19.7

  • Click here for more IB Math SL style logarithms practice problems