BC Math 9 Proportional Reasoning 1 (solutions)
Visit hunkim.com/9

- a given 2D shape
- Solving a scale diagram problem by applying the properties of similar triangles, including measurements
- Integration of scale for First Peoples mural work, use of traditional design in current First Peoples fashion design, use of similar triangles to create longhouses / models

1. How many cm in 2 meters? 200
2. How many mm in a km?
$1 \mathrm{~km}=1000 \mathrm{~m}=1000 \times 100 \mathrm{~cm}=100,000 \mathrm{~cm}=1,000,000 \mathrm{~mm}$
3. If a 10 cm long toy car is at a scale of $1: 20$ how long is the car in real life?
$10 \mathrm{~cm} \times 20=200 \mathrm{~cm}=2 \mathrm{~m}$
4. A picture of the COVID virus is 5 cm long. If the virus is 100 nanometers long in real life, what is the scale of this picture? (ex. 200:1, 1:2000, etc.)
Nanometers means one-billionth of a meter.
picture : real
5 cm : 100 nanometres
50 mm : 100 nanometres:
50000 micrometers : 100 nanometers
50000000 nanometers : 100 nanometers
500 000: 1
5. See triangle below:

a. Find c

13
b. Find x
$\frac{x}{2.5}=\frac{12}{5}$
$5 x=30$
$x=6$
6. Find x in the diagram below:

Small triangle: 3-4-5
Compare to larger triangle
$\frac{3}{6}=\frac{5}{5+x}$
$30=15+3 x$
$3 x=15$
$x=5$
7. The Burj Khalifa is about 830 m tall. The ruler measurement of a picture of this building is 6 cm . The ruler measurement of the picture of the monster is 4.25 cm . How tall is the monster in real life?

$\frac{830}{6}=\frac{h}{4.25}$
$6 h=3527.5 \rightarrow h \approx 587.9 \mathrm{~m}$
8. The perimeter of the small hexagon in the diagram below is 12 m .

a. Find the side length of the large hexagon.

Small side is $x .6 x=12 \rightarrow x=2$

Then one side of large is $2 x=4$.
b. Express the perimeter of the smaller hexagon to the perimeter of the larger hexagon as a simplified ratio.
Perimeter of smaller is $6 \times 2=12$
Perimeter of larger is $6 \times 4=24$
24: $12 \rightarrow 1$: 2
9. Find x in the diagram below:

$$
\begin{aligned}
& \frac{7}{9}=\frac{5}{x} \\
& 7 x=45 \\
& x=\frac{45}{7}
\end{aligned}
$$

10. Challenge 1: 360 degrees is equal to 2π radians. The formula for the circumference of a circle is $C=$
$2 \pi r$ and the area of a circle is $A=\pi r^{2}$. Show that the arc length of a sector of a circle is arc $=\theta r$.
$\frac{\operatorname{arc}}{\text { circumference }}=\frac{\theta \text { in radians }}{1 \text { full revolution }}$
$\frac{\operatorname{arc}}{2 \pi r}=\frac{\theta}{2 \pi \text { radians }}$
Multiply both sides by $2 \pi r$
$\operatorname{arc}=\theta r$
11. Challenge 2: Why is the area of the sector below $A_{\text {sector }}=\frac{\theta r^{2}}{2}$?

Set up a proportion:
$\frac{A_{\text {sector }}}{A_{\text {circle }}}=\frac{\theta}{2 \pi}$
$\frac{A_{\text {sector }}}{\pi r^{2}}=\frac{\theta}{2 \pi}$
Multiply both sides by πr^{2}
$A_{\text {sector }}=\frac{\theta \pi r^{2}}{2 \pi}=\frac{\theta r^{2}}{2}$
12. Challenge 3: See the Pit House below:

a. How many times does the volume of the Pit House grow by doubling the dimensions?
$V_{1}=\frac{1}{2} \pi r^{2} \times 10=\frac{\pi(4)}{2} \times 10=20 \pi$
$V_{2}=\frac{1}{2} \pi r^{2} \times 20=\frac{\pi(16)}{2} \times 20=160 \pi$
160π : $20 \pi=8$ (the volume is 8 times larger)
b. How many times does the area of the Pit House grow by doubling the dimensions?
$A_{1}=\pi r^{2}+l w+\frac{2 \pi r}{2}=\pi(4)+(4)(10)+\pi(2)=6 \pi+40$
$A_{2}=\pi r^{2}+l w+\frac{2 \pi r}{2}=\pi(16)+(8)(20)+\frac{2 \pi(8)}{2}=24 \pi+160$
The area is 4 times larger
c. How large does the Pit House's area scale up by increasing the dimensions by a factor of n ? The area increases by a factor of n^{2}
d. How large does the Pit House's volume scale up by increasing the dimensions by a factor of n ? The volume increases by a factor of n^{3}
e. Does this scaling ratio increase for all types of shapes?

Yes

