Here you will find a concise collection of radicals practice problems. Visit this site directly at hunkim.com/radicals
- Evaluate
- \sqrt{9}
- \sqrt{1}
- \sqrt{0}
- \sqrt{\frac{4}{9}}
- \sqrt{4,000,000}
- \sqrt{0.25}
- \sqrt[3]{-8}
- \sqrt{-1}
- True or False: \sqrt{4}=\pm2
- Write \sqrt{8} as a mixed radical.
- Write 3\sqrt{3} as an entire radical.
- Write \sqrt[3]{5400} as a mixed radical.
- Write -2\sqrt[3]{3} as an entire radical.
- Give an example of a radical that is not an irrational number.
- Arrange from least to greatest:
- I: \sqrt{9}
- II: 2\sqrt{3}
- III: -\sqrt{100}
- IV: \pi
- Arrange from least to greatest (assume x>1):
- I: \sqrt{x^2}
- II: \sqrt[4]{x}
- III: \sqrt[3]{x}
- \left(\sqrt{x}\right)\left(\sqrt[3]{x}\right)=x^k. Find k.
- Simplify \sqrt{8}+3\sqrt{2}
- Simplify \sqrt{8}-\sqrt[3]{32}+3\sqrt{2}+\sqrt[3]{4}
- Simplify \frac{-2+\sqrt{12}}{-2}
- Expand and simplify:
- \left(2-\sqrt{2}\right)^2
- \left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)
- 3\left(\sqrt{8}-\sqrt{2}\right)\left(1-\sqrt{8}\right)
- A rectangle has a base of 4\sqrt{2}-2\sqrt{3} and a height \sqrt{8}-\sqrt{3}
- Area in simplified form?
- Perimeter in simplified form?
- Solve the radical equation:
- \sqrt{x}=3
- 2\sqrt{x}=4
- \sqrt{x-2}=3
- \sqrt{x+4}=2-x
- \sqrt{2x+2}+3=x
- \sqrt{x+2}-1=\sqrt{x-3}
- Rationalize:
- \frac{1}{\sqrt{2}}
- \frac{3}{\sqrt{3}}
- \frac{2}{\sqrt[3]{2}}
- Rationalize the denominator by multiplying by the conjugate: \frac{4\sqrt{2}-5\sqrt{3}}{\sqrt{3}-4}
- y=\sqrt{x}
- Sketch
- Domain?
- Range?
- Use Desmos to investigate the effects of parameters a and b: y=a\sqrt{x-b}+c.
- f(x)=\sqrt{x-2}
- Sketch
- Domain?
- Range?
- Evalaute f(11)
- What is the domain to y=\sqrt{1-2x}
- y=\sqrt[3]{x}
- Sketch
- Domain?
- Range?
- Define y=|x|
- Simplify:
- \sqrt{x^2}
- \sqrt{x^4}
- \sqrt{x^5}
- \sqrt{x^8}
- \sqrt{x^{10}}
Answers
- 3
- 1
- 0
- 2/3
- 2000
- 0.5
- -2
- undefined or i
- False. \sqrt{4}=2 but if x^2=4 then x=\pm2
- 2\sqrt2
- \sqrt{27}
- 6\sqrt[3]{25}
- -\sqrt[5]{24} or \sqrt[3]{-24}
- ex. \sqrt{4}
- III, I, IV, II
- II, III, I
- 5/6
- 5\sqrt{2}
- 5\sqrt{2}-\sqrt[3]{4}
- 1-2\sqrt{3}
- 6-4\sqrt{2}
- 1
- 3\sqrt{2}-12
- 22-8\sqrt{6}
- 12\sqrt{2}-6\sqrt{3}
- 9
- 4
- 11
- 0
- 7
- 7
- \frac{1}{\sqrt{2}}
- \frac{3}{\sqrt{3}}
- \frac{2}{\sqrt[3]{2}}
- \frac{20\sqrt{3}+15-16\sqrt{2}-4\sqrt{6}}{13}
- See graph below:
- x\geq0
- y\geq0
- See graph below:
- a affects the vertical stretch.
b shifts the graph left or right.
c shifts the graph up or down. - See graph below:
- x\geq2
- y\geq0
- See graph below:
- x\leq\frac{1}{2}
- See graph below:
- x\in\reals
- y\in\reals
- See graph below:
- y=\begin{cases} x & x\geq0 \\ -x & x<0 \end{cases}
- |x|
- x^2
- x^2\sqrt{x}
- x^4
- |x^5|
- Click here for more math practice problems.